
Simple things in PostgreSQL
That will break your application
Radim Marek

radim@boringsql.com

The anti-credentials

Databases are elegant,
logical and beautiful systems

... and then we let developers connect to them.

Silly thing developers
say about databases

The Confession: I was one of them.

It’s just a dumb storage layer.1.
ORMs handle all the SQL so we don’t need to understand it.2.
We should store it as JSON.3.
Let's avoid JOINs for performance4.

The Graveyard of Shiny Things
CORBA, DCOM, RMI-heavy apps, J2EE, JSF, Struts, Aspects, ASP.NET Web Forms,
Rails “classic” apps, Flash, jQuery, NoSQL, Silverlight, ActiveX , Applets,
GWT (Google Web Toolkit), XML-heavy storage, SOAP-heavy web services,
Message brokers (TIBCO, MQ-series)

The Disconnect

The comforting things we tell to ourselves
#1: "SELECT is read-only and safe"
Reality: SELECT holds snapshots that block cleanup

#2: "Transactions protect my data"
Reality: Long transactions are production killers

#3: "Adding an index makes queries faster"
Reality: Indexes have hidden maintenance costs

These aren't wrong, exactly.
They're just... incomplete truths.

MVCC
Reality: PostgreSQL uses MVCC

(Multi-Version Concurrency Control)

Every transaction gets a snapshot:

Shows database as it was when transaction started–
Prevents you from seeing other transactions' changes–
Keeps old row versions alive until snapshot is done–

Today's Journey - The
Cascading Failure

ACT I - The Integration
That Started It All

HubSpot Integration
def sync_contact_from_hubspot(hubspot_contact_id)
 ActiveRecord::Base.transaction do
 contact = Contact.find_by(hubspot_id: hubspot_contact_id)

 # Fetch latest data from HubSpot API
 hubspot_data = HubspotClient.get_contact(hubspot_contact_id)

 # Enrich with Clearbit data
 clearbit_data = ClearbitClient.enrich(hubspot_data[:email])

 # Update our database
 contact.update!(
 name: hubspot_data[:name],
 email: hubspot_data[:email],
 company: clearbit_data[:company],
 title: clearbit_data[:title],
 last_synced_at: Time.now
)

 # Log to audit system
 AuditLogger.log_sync(contact, hubspot_data)
 end
end

Friday Afternoon - The Marketing Import
Monday-Thursday: Everything fine
• 5 contacts sync per minute
• 3 seconds per contact = ~15 seconds of work per minute
• Life is good ✓

Friday, 3:00 PM: Marketing does their job
• Import 50,000 updated contacts into HubSpot
• "Let's get these into our system before end of day!"
• Totally reasonable business request

BOOM! You start the investigation...

Boom - idle in transaction
SELECT pid, usename, state,
 now() - xact_start as duration,
 left(query, 80) as query
FROM pg_stat_activity
WHERE state = 'idle in transaction'
ORDER BY duration DESC;

 pid | state | duration | query
-------+----------------------+-----------+----------

 12451 | idle in transaction | 00:03:22 | SELECT *
FROM contacts...
 12452 | idle in transaction | 00:03:18 | SELECT *
FROM contacts...
 12453 | idle in transaction | 00:03:15 | SELECT *
FROM contacts...
 12454 | idle in transaction | 00:02:54 | SELECT *
FROM contacts...

 ...
 (45 rows showing 'idle in transaction')

SELECT schemaname, relname,
 last_autovacuum,
 n_dead_tup,
 autovacuum_count
FROM pg_stat_user_tables
WHERE relname = 'contacts';

 relname | last_autovacuum | n_dead_tup |
autovacuum_count
-----------+---------------------+------------+------

 contacts | 2025-11-24 17:23:11 | 8500000 | 847

The VACUUM
Misconception
When you google/ask LLM about bloat,
top results are

"Tune
autovacuum_vacuum_scale_factor"

–

"Increase autovacuum_max_workers"–
"Adjust vacuum_cost_delay"–
"Set autovacuum more aggressive"–

ALTER SYSTEM SET
autovacuum_vacuum_scale_factor = 0.05;
ALTER SYSTEM SET autovacuum_max_workers = 6;
ALTER SYSTEM SET autovacuum_vacuum_cost_delay
= 2;

Emergency fix
def sync_contact_from_hubspot(hubspot_contact_id)
 # Phase 1: Read (no transaction)
 contact = Contact.find_by(hubspot_id: hubspot_contact_id)

 # Phase 2: External I/O (no transaction)
 hubspot_data = HubspotClient.get_contact(hubspot_contact_id)
 clearbit_data = ClearbitClient.enrich(hubspot_data[:email])

 # Phase 3: Write (SHORT transaction)
 ActiveRecord::Base.transaction do
 contact.reload
 contact.update!(...data...)
 end # 50ms instead of 3 seconds

 # Phase 4: Audit (no transaction)
 AuditLogger.log_sync(contact, hubspot_data)
end

First defense layer
ALTER SYSTEM SET idle_in_transaction_session_timeout = '2s';
SELECT pg_reload_conf();

What this does:
Any transaction idle >5 seconds → killed automatically–
Catches external I/O in transactions–
Catches forgotten transactions–
Catches framework auto-wrapping–

ACT II - Optimization
That Made It Worse

Let's Make The Dashboard Faster
Product Manager: "Great work on Friday! Hey, the deal
dashboard is slow when sorting users by last login time. Can we
speed that up?"
Developer: "Sure, easy fix - just need an index."

Just Use The Index, Luke
On Monday:
CREATE INDEX contacts_by_activity ON contacts(last_activity);

✓ Query time: 2 seconds → 50ms

✓ Tests pass

✓ Dashboard is now fast again

SHOOT!$$#$

What Indexes Actually Cost
UPDATE contacts SET last_activity = NOW() WHERE id =
123456;

Before the index:
Write new row version to same heap page →
new tuple (HOT update)

1.

Mark old row version as dead → dead tuple2.
No index updates needed - all indexes still
point to same page

3.

Generate minimal WAL (just heap change)4.
Replicate to standbys5.

After the index
UPDATE contacts SET last_activity = NOW() WHERE id =
123456;

With the index:
Write new row version to heap → new tuple
(may need new page)

1.

Mark old row version as dead → dead tuple2.
Update contacts_pkey (id) → new pointer3.
Update contacts_by_owner_id → new
pointer

4.

Update contacts_by_creation → new pointer5.
Update contacts_by_activity → new entry
with new value

6.

Generate WAL for all these changes (heap +
4 indexes)

7.

Replicate to standbys8.

Wednesday Afternoon -
Monday-Tuesday: Everything fine
• Life is good ✓

Wednesday, 3:00 PM: Something is off, the app is now sluggish
• Dead tuples: 15,000,000 (was 2,000,000 on Monday)
• Bloat ratio: 35% (was 15% on Monday)
• HOT update ratio: 0% (was 95% on Monday)
• VACUUM running constantly (was occasional)

SELECT schemaname, relname, n_tup_upd, n_tup_hot_upd,
 round(100.0 * n_tup_hot_upd / NULLIF(n_tup_upd, 0), 1) as hot_pct
FROM pg_stat_user_tables
WHERE relname = 'contacts';

 relname | n_tup_upd | n_tup_hot_upd | hot_pct
----------+-----------+---------------+---------
 contacts | 2500000 | 0 | 0.0

But but it's only minor slow
down on updates?!? Right?
-- The query that was supposed to be FAST (50ms on Monday)
SELECT * FROM contacts
WHERE last_activity > NOW() - INTERVAL '14 days'
ORDER BY last_activity DESC;

-- Now: 1.02 seconds (and getting worse)
-- SeqScan in full swing

Index Bloat: What VACUUM Can't Fix
CREATE EXTENSION pgstattuple;

SELECT * FROM pgstatindex('contacts_by_activity');

 avg_leaf_density | leaf_fragmentation

------------------+-------------------

 32.4 | 67.8

-- Should be 90% | Should be < 10%

The only "fast" fix: REINDEX
CONCURRENTLY (rebuild from scratch)

This is how production
systems degrade

Not one big mistake
A series of reasonable decisions

ACT III: The Best Practice
That Killed Everything

Monday 11:00

ERROR: canceling statement due to conflict with recovery
DETAIL: User query might have needed to see row versions that must be
removed.

 No reports workings... weekly management meeting is
about to start

The Fix: Enable hot_standby_feedback
-- Set hot_standby_feedback = on on the standby, which
-- passed back information to the primary that certain
-- rows are still needed in a table. This will cause bloat
-- on the primary, but allows queries on the secondary to
-- finish reliably.

ALTER SYSTEM SET hot_standby_feedback = on;
SELECT pg_reload_conf();

Analytics team is happy

Business is happy

Wednesday: The
Primary Starts Dying
-- On primary, everything looks fine locally
SELECT * FROM pg_stat_activity WHERE state =
'idle in transaction';
-- 0 rows! No long transactions here!

-- But check this:
SELECT * FROM pg_replication_slots;
-- or
SELECT client_addr, backend_xmin,
 age(backend_xmin) as xmin_age
FROM pg_stat_replication;

-- backend_xmin from 6 hours ago...
-- THAT's what's blocking VACUUM

oh the irony

Fixed the transaction duration ✓
Added idle_in_transaction_timeout ✓
Set up read replicas to offload analytics
✓
Enabled hot_standby_feedback to
prevent query cancellations ✓

Metrics

Metrics:
• Replica CPU: 60% (expected for
analytics)
• Primary CPU: 70% (high but not
maxed)
• Connections: Primary 150/200,
Replica 20/50
• No errors in logs
• Replication lag: <1 second

What's wrong?
A) Replica stealing CPU from primary
B) Network latency between primary
and replica
C) Replica queries somehow affecting
primary VACUUM
D) Too many connections on primary
E) This is impossible - replicas can't
affect primary

The Hidden Connection

The mechanism:
Answer: C - Replica queries are blocking primary VACUUM

Analytics query starts on replica1.
Query scans 10 million rows, takes 2 minutes2.
Replica needs a consistent view for those 2 minutes3.
Replica → Primary: "Don't clean up rows I might need"4.
Primary VACUUM: "Okay, I'll wait"5.
For 2 minutes, primary accumulates dead tuples6.
Query finishes7.
But another analytics query starts...8.
And another...9.
Primary VACUUM blocked continuously10.

What hot_standby_feedback Does
WITHOUT hot_standby_feedback (default: OFF):

Replica behavior:
• Long query running (analyzing 2 years of data)
• Primary sends WAL: "I deleted these rows"
• Replica: "But my query needs those rows!"
• After 30 seconds: ERROR: canceling statement due to conflict with recovery
• Query fails ✗
• Analytics team complains ✗
• But: Primary stays healthy ✓

WITH hot_standby_feedback (ON):

Replica behavior:
• Long query running (analyzing 2 years of data)
• Replica → Primary: "Hold XID 5,234,891, don't clean yet"
• Primary: "Okay, I won't clean those rows"
• Query runs for 2 minutes successfully ✓
• Analytics team happy ✓
• But: Primary accumulates dead tuples for 2 minutes ✗

The Timeline of the bloat
Primary sees:
6:00-6:02 PM: Daily report holds XID 5,234,891
 VACUUM: "Waiting..."
 User traffic: 1,000 UPDATEs/sec × 120 sec = 120,000 dead
tuples

6:02-6:07 PM: Weekly aggregation holds XID 5,235,200
 VACUUM: "Still waiting..."
 User traffic: 1,000 UPDATEs/sec × 300 sec = 300,000 dead
tuples

6:07-6:15 PM: Monthly rollup holds XID 5,236,100
 VACUUM: "STILL waiting..."
 User traffic: 1,000 UPDATEs/sec × 480 sec = 480,000 dead
tuples

The smoking gun
SELECT client_addr,

 state,

 backend_xmin,

 replay_lag

FROM pg_stat_replication;

 client_addr | state | backend_xmin | replay_lag

-----------------+-----------+--------------+------------

 10.0.1.52 | streaming | 5234891 | 00:00:00.2

Meanwhile on replica for analytics
SELECT pid, state,
 now() - xact_start as duration,
 left(query, 80) as query
FROM pg_stat_activity
WHERE backend_xmin IS NOT NULL;

 duration | query
-----------+--------
 01:03:15 | SELECT date_trunc('month', created_at), count(*),
sum(revenue)...

#incidents -
147 messages
[CEO has joined the channel]

"Everything was fine three weeks
ago. What changed?"

Three things changed.

And they compounded.

Number of simple things
Big Compound disaster

The emergency fix

SELECT schemaname, relname, n_dead_tup, last_autovacuum
FROM pg_stat_user_tables
WHERE n_dead_tup > 10000
ORDER BY n_dead_tup DESC;

Sacrifice the reporting on day 1 (give ETA)1.
Manually trigger VACUUM (not FULL) on the worst affected
table (can be dozens at this point)

2.

Watch the progress3.

Fix the HOT updates
PostgreSQL for everything works...

But might not always be a good solution

Setup monitoring
Idle in Transaction
SELECT pid, usename, state,
 now() - xact_start as duration,
 left(query, 80) as query
FROM pg_stat_activity
WHERE state = 'idle in transaction'
 AND now() - xact_start > interval '1 second'
ORDER BY duration DESC;

Dead Tuple Accumulation

SELECT schemaname, relname,
 n_dead_tup, n_live_tup,
 round(100.0 * n_dead_tup /
NULLIF(n_live_tup, 0), 1) AS
dead_pct,
 last_autovacuum
FROM pg_stat_user_tables
WHERE n_dead_tup > 10000
ORDER BY n_dead_tup DESC;

HOT Update Ratio

SELECT schemaname, relname,
 n_tup_upd, n_tup_hot_upd,
 round(100.0 * n_tup_hot_upd /
NULLIF(n_tup_upd, 0), 1) AS hot_pct
FROM pg_stat_user_tables
WHERE n_tup_upd > 1000
ORDER BY n_tup_upd DESC;

SELECT
 client_addr,
 backend_xmin,
 age(backend_xmin) as xmin_age,
 replay_lag
FROM pg_stat_replication;

The Compound Effect
Week 1: Transaction duration problem
 Dead tuples/hour: 50,000
 VACUUM capacity: 200,000/hour
 Net: VACUUM keeping up ✓

Week 2: + HOT disabled by index
 Dead tuples/hour: 250,000 (5x increase)
 VACUUM capacity: 200,000/hour
 Net: Slowly losing ground

Week 3: + hot_standby_feedback blocking VACUUM
 Dead tuples/hour: 250,000
 VACUUM capacity: 0/hour (during analytics window)
 Net: 6 hours of zero cleanup = 1.5M dead tuples
 Every. Single. Day.

The Real Lesson
This wasn't a PostgreSQL problem.

This was a mental model problem.

We thought: "Transactions protect data"
Reality: Transactions hold snapshots that
block cleanup

We thought: "Indexes make queries faster"
Reality: Indexes disable optimizations and
multiply maintenance

We thought: "Replicas isolate workloads"
Reality: Replicas can reach back and choke
the primary

The (Not So)
Beautiful Truth

PostgreSQL tells you the truth.
But it tells you in pieces.

Each piece is correct.
But the whole picture?
That only emerges in production.
At scale.
At any time.
When someone's pager goes off.

What I Want You To Remember

Not the queries.
Not the settings.
Not the emergency fixes.

One thing:

SELECT holds snapshots.
Transactions block cleanup.
Indexes multiply writes.
Replicas can poison primaries.

Every operation in PostgreSQL
has a cost you don't see until
scale reveals it.

Now Let's Make It Actionable
pg_stat_activity → Who's holding snapshots?
pg_stat_user_tables → Where's the bloat?
pg_stat_replication → Is my replica choking my primary?
pgstattuple → Are my indexes healthy?

Simple Thing No
1 - Transactions
The Rules

Never do external I/O inside a
transaction

1.

Measure transaction duration, not
query duration

2.

Set a hard limit, be relentless3.

-- Transaction / snapshot issues
statement_timeout
idle_in_transaction_session_timeout
lock_timeout

-- Replication
max_standby_streaming_delay
max_standby_archive_delay
hot_standby_feedback
vacuum_defer_cleanup_age

It's not just global settings
idle_in_transaction_session_timeout = '5s';
statement_timeout = '10s';
lock_timeout = '3s';

ALTER ROLE app_user SET statement_timeout = '5s';
ALTER ROLE app_user SET idle_in_transaction_session_timeout = '1s';

ALTER ROLE migration_user SET lock_timeout = '60s';
ALTER ROLE migration_user SET statement_timeout = '30min';

Transaction for developers
Still one of tho most misunderstand concepts

Transaction = Breath hold

The database holds its breath until you commit.

Don't make it hold its breath while you call an API.

Short transaction = Happy database

But What About 2PC/XA?
 Two-Phase Commit: The "solution"

that doubles your problems.
2PC = 2X Problems
 = 2X Latency
 = 2X Failure modes
 = 2X Complexity
 = 2X The reason your DBAs/DBREs drinks

 Long transaction hoping nothing
fails

 2PC/XA hoping databases
coordinate

 Short transactions (database writes
only)

 Idempotency keys (safe retries)
 Outbox pattern (reliable events)
 Compensation (undo what you can't

prevent)

IT (all) DEPENDS

Philosophy of boringSQL

