Simple things in PostgreSQL
That will break your application

Radim Marek

radim@boringsql.com

boringSOL

The anti-credentials

WORKEXPERIENCE

v

Lows aoclor chilor céins eoike
GURSHIO MO (AR, BUUIENT 6CROADID R!

L d¢ & G 0tus teovac
= (30 cioi0 € BLoiMoalls neit.

Lorefri1 {pi} C i P 20/INITSHs, et
BrUBALICI0QX8I¥ U f tod et 0 USE
00ft DI EUT IR {oer

erteira oty Mo ¢ ;i aima A l f

BURCEID PINTID,

LR ADOTRLONG ONAa CRWP UPCER IS OIL

EDUCATION

TONLEM CCIATEE A
JM ___ (onmeno coremn @it
20708 ONGEGHTi (RO ToeTns{)

©PONB NKIONBORNTIFESD

A On ©Ue0
—_— e oozes t
uny wno

Laitemit jpsaurm dolor git enortatea cmfh
crouent to aoonrert ti1its cars aart erncpgd
SHIIL. [RGOO0A LG RAL ARAID LOMO T OIFE 08
0fsCres 0N VITONRIBS.

ment, consscedadiue elit,
o't .cn omAUL10n, olrot d19V:t do
10000r [ICCnrn tierios 00s

v 0010 nealrf: to croot detron oeonuiec
| WEDIITI CIIAD TN OTO) AEFOTLTKIC NTITe 6DS

nhot deiotolutctad gokescott acodnttia olit

WY1 (ns coirPOECIZIORUCHIS Satti-iton: 0log BLCH] RLOSST 10

ite CIICL Vs e hvtnn fumir0ome (cneno nirutnn are
fenma

Lorem jpsurn dolor sit amec, Lorem {psum dolor sit amec

¢ IBBBIT 8UIDDOT 8fC BOUU Citibe ORRIS,

{8 ociotitiG 61t eRIo0tI3 enuUs CerRnus
SL0BY101d8 1A 0 GERIT 0RO PAMTS.

ncue cetobrun ofiice astes
2001 00012 GNONA FAUBE.

SKILLS

LANQR COREMAMLA
t al LR
CIMCATt oI

LONUGN COAQRRIAMGIN
LOsYOCtV caLfudaronse iet: ust:

CUTDICIYGIT

Lorem ipswurn dolor sit amst, conoscemaour adipicing ell
CODQIIDGLIEN OKNILIDUOI 0L OIQN BZKD [aW RUSOITIO3Urtvel: ROAMIKILS
adti €Lt00a KUOLND EIG ILTOUIC md reretctoe oorcyurat uol Sofoos
oORtCCITClUr BIOS AN 1IT0Z0C.

ibirern iobaurr dolor sit annudt. conewmso:tetbud: adipitcing eit

S0001IS 8NOCIONACAINIE (€61 AlLLIUAIS
UDRIUE GOLLUE 000 O1200|SUTTB Vot
CLucLIiG Grantcio.

GLIbD (@r CU0CCO0i KA olh! OIeArs nanlooxersn nesireich notamorir NN CUM (0 00MNDO) Il CIboes

dojoies, ouicteuto aris otccaranaar ¥ coi P03 COFUCNINOCOI MO0,
Ortecoatur CowNUM.

boringSOL

Databases are elegant,
logical and beautiful systems

boringSOL

... and then we let developers connect to them.

boringSOL

Silly thing developers
say about databases

1. It’s just a dumb storage layer.

2. ORMs handle all the SQL so we don’t need to understand it.
3. We should store it as JSON.

4. Let's avoid JOINs for performance

The Confession: | was one of them.

boringSOL

The Graveyard of Shiny Things

CORBA, DCOM, RMI-heavy apps, J2EE, JSF, Struts, Aspects, ASP.NET Web Forms,
Rails “classic” apps, Flash, jQuery, NoSQL, Silverlight, ActiveX , Applets,
GWT (Google Web Toolkit), XML-heavy storage, SOAP-heavy web services,
Message brokers (TIBCO, MQ-series)

boringSOL

boringSOL

boringSOL

The Disconnect

o1 My Database = Production Database(s)

v Thousands rows x Millions - billions of rows

v Single User (You) x 2,000+ QPS

v Most likely Apple Sillicon x Stream replication to 10+ replicas (AZs?)

v "Works in 10ms" x Backup jobs running

You write code. x Analytics/Monitoring queries running

You test it. x Analytics/Monitoring queries running
e x The laws of physics apply

You ship it. "It works in staging" is not a benchmark. It's a
You go for lunch... comforting lie.

boringSOL

The comforting things we tell to ourselves

#1:. "SELECT is read-only and safe"
Reality: SELECT holds snapshots that block cleanup

#2: "Transactions protect my data”
Reality: Long transactions are production killers

#3: "Adding an index makes queries faster”
Reality: Indexes have hidden maintenance costs

These aren't wrong, exactly.

They're just... incomplete truths.

boringSOL

MVCC

Reality: PostgreSQL uses MVCC

(Multi-Version Concurrency Control)

Every transaction gets a snapshot:

— Shows database as it was when transaction started
— Prevents you from seeing other transactions' changes
— Keeps old row versions alive until snapshot is done

boringSOL

Today's Journey - The
Cascading Failure

boringSOL

ACT | - The Integration
That Started It All

boringSOL

HubSpot Integration

def sync_contact_from_hubspot(hubspot_contact_id)
ActiveRecord: :Base.transaction do
contact = Contact.find_by(hubspot_id: hubspot_contact_id)

hubspot_data = HubspotClient.get_contact(hubspot_contact_id)
clearbit_data = ClearbitClient.enrich(hubspot_datal:emaill])

contact.update! (
name: hubspot_data[:name],
email: hubspot_datal :email],
company: clearbit_datal[:company],
title: clearbit_data[:title],
last_synced_at: Time.now

AuditlLogger.log_sync(contact, hubspot_data)
end
end

boringSOL

Friday Afternoon - The Marketing Import
Monday-Thursday: Everything fine

« 5 contacts sync per minute
« 3 seconds per contact = ~15 seconds of work per minute
« Life is good v

Friday, 3:00 PM: Marketing does their job

« Import 50,000 updated contacts into HubSpot
« "Let's get these into our system before end of day!"”
- Totally reasonable business request

BOOM! You start the investigation...

boringSOL

BOOm - idle in transaCtion SELECT schemaname, relname,

last_autovacuum,

SELECT pid, usename, state, n_dead_tup,
now() - xact_start as duration, autovacuum_count
left(query, 80) as query FROM pg_stat_user_tables
FROM pg_stat_activity WHERE relname = 'contacts';
WHERE state = 'idle in transaction’
ORDER BY duration DESC; relname | last_autovacuum | n_dead_tup |
autovacuum_count
pid | state | duration | query
——————— e e el TR

————————————————— contacts | 2025-11-24 17:23:11 | 8500000 | 847
12451 | idle in transaction | ©0:03:22 | SELECT *

FROM contacts...

12452 | idle in transaction | ©00:03:18 | SELECT *

FROM contacts...

12453 | idle in transaction | ©0:03:15 | SELECT *

FROM contacts...

12454 | idle in transaction | ©00:02:54 | SELECT *

FROM contacts...

(45 rows showing 'idle in transaction')

boringSOL

The VACUUM
Misconception

When you google/ask LLM about bloat,
top results are

"Tune
autovacuum_vacuum_scale_factor"
"Increase autovacuum_max_workers"
"Adjust vacuum_cost_delay"

"Set autovacuum more aggressive"

ALTER SYSTEM SET
autovacuum_vacuum_scale_factor ;

ALTER SYSTEM SET autovacuum_max_workers

ALTER SYSTEM SET autovacuum_vacuum_cost_delay

boringSOL

Emergency fix

def sync_contact_from_hubspot(hubspot_contact_id)
Phase 1: Read (no transaction)
contact = Contact.find_by(hubspot_id: hubspot_contact_id)

Phase 2: External I/0 (no transaction)
hubspot_data = HubspotClient.get_contact(hubspot_contact_id)
clearbit_data = ClearbitClient.enrich(hubspot_datal :email])

Phase 3: Write (SHORT transaction)

ActiveRecord: :Base.transaction do
contact.reload
contact.update!(...data...)

end # 50ms instead of 3 seconds

Phase 4: Audit (no transaction)

AuditlLogger.log_sync(contact, hubspot_data)
end

boringSOL

First defense layer

ALTER SYSTEM SET idle_in_transaction_session_timeout = '2s’';
SELECT pg_reload_conf();

What this does:

— Any transaction idle >5 seconds — killed automatically
— Catches external I/O in transactions

— Catches forgotten transactions

— Catches framework auto-wrapping

boringSOL

ACT Il - Optimization
That Made It Worse

boringSOL

Let's Make The Dashboard Faster

Product Manager: "Great work on Friday! Hey, the deal
dashboard is slow when sorting users by last login time. Can we

speed that up?"

Developer: "Sure, easy fix - just need an index."

boringSOL

Just Use The Index, Luke
On Monday:

CREATE INDEX contacts_by_activity ON contacts(last_activity);

v Query time: 2 seconds — 50ms
v Tests pass

v Dashboard is now fast again

SHOOT!$$#$

boringSOL

What Indexes Actually Cost

UPDATE contacts SET last_activity = NOW() WHERE id =
123456 ;

Before the index:

1.

2.
3.

€))

Write new row version to same heap page —
new tuple (HOT update)

Mark old row version as dead — dead tuple
No index updates needed - all indexes still
point to same page

. Generate minimal WAL (just heap change)
. Replicate to standbys

After the index

UPDATE contacts SET last_activity = NOW() WHERE id =
123456 ;

With the index:

1.

A~ W

&)

Write new row version to heap — new tuple
(may need new page)

. Mark old row version as dead — dead tuple
. Update contacts_pkey (id) — new pointer
. Update contacts_by_owner_id — new

pointer

. Update contacts_by_creation — new pointer
. Update contacts_by_activity — new entry

with new value

. Generate WAL for all these changes (heap +

4 indexes)

. Replicate to standbys

boringSOL

Wednesday Afternoon -
Monday-Tuesday: Everything fine

« Life is good v
Wednesday, 3:00 PM: Something is off, the app is now sluggish

- Dead tuples: 15,000,000 (was 2,000,000 on Monday)
« Bloat ratio: 35% (was 15% on Monday)

* HOT update ratio: 0% (was 95% on Monday)

« VACUUM running constantly (was occasional)

boringSOL

SELECT schemaname, relname, n_tup_upd, n_tup_hot_upd,
round(100.0 * n_tup_hot_upd / NULLIF(n_tup_upd, 6), 1) as hot_pct
FROM pg_stat_user_tables

WHERE relname = 'contacts';
relname | n_tup_upd | n_tup_hot_upd | hot_pct
—————————— e e
contacts | 2500000 | © | 0.0

boringSOL

But but it's only minor slow
down on updates?!? Right?

SELECT * FROM contacts
WHERE last_activity > NOW() - INTERVAL '14 days'
ORDER BY last_activity DESC;

boringSOL

Index Bloat: What VACUUM Can't Fix

CREATE EXTENSION pgstattuple;
SELECT * FROM pgstatindex('contacts_by_activity');

avg_leaf_density | leaf_fragmentation

32.4 | 67.8

The only "fast" fix: REINDEX
CONCURRENTLY (rebuild from scratch)

boringSOL

This is how production
systems degrade

Not one big mistake
A series of reasonable decisions

boringSOL

ACT lll: The Best Practice
That Killed Everything

boringSOL

Monday 11:00

ERROR: canceling statement due to conflict with recovery
DETAIL: User query might have needed to see row versions that must be
removed.

NE=l NE= NEob

about to start

boringSOL

The Fix: Enable hot_standby feedback

ALTER SYSTEM SET hot_standby_feedback = on;
SELECT pg_reload_conf();

Analytics team is happy
Business is happy &

boringSOL

Wednesday: The
Primary Starts Dying

SELECT * FROM pg_stat_activity WHERE state =
'idle in transaction';

SELECT * FROM pg_replication_slots;

SELECT client_addr, backend_xmin,
age(backend_xmin) as xmin_age
FROM pg_stat_replication;

oh the irony
Fixed the transaction duration v
Added idle in_transaction timeout v

Set up read replicas to offload analytics
v

Enabled hot_standby_feedback to
prevent query cancellations v

boringSOL

Metrics

Metrics: What's wrong?

* Replica CPU: 60% (expected for A) Replica stealing CPU from primary
analytics) B) Network latency between primary
* Primary CPU: 70% (high but not and replica

maxed)

C) Replica queries somehow affecting
» Connections: Primary 150/200, primary VACUUM

Replica 20/50 D) Too many connections on primary

* No errors in logs E) This is impossible - replicas can't

* Replication lag: <1 second affect primary

boringSOL

—

The Hidden Connection

Answer: C - Replica queries are blocking primary VACUUM
The mechanism:

. Analytics query starts on replica

. Query scans 10 million rows, takes 2 minutes

. Replica needs a consistent view for those 2 minutes
Replica — Primary: "Don't clean up rows | might need"
Primary VACUUM: "Okay, I'll wait"

. For 2 minutes, primary accumulates dead tuples

. Query finishes

. But another analytics query starts...

. And another...

. Primary VACUUM blocked continuously

O ©O©OMNOOUAWN =

boringSOL

What hot_standby_feedback Does

WITHOUT hot_standby_feedback (default: OFF):

Replica behavior:

* Long query running (analyzing 2 years of data)

* Primary sends WAL: "I deleted these rows”

* Replica: "But my query needs those rows!”

- After 30 seconds: ERROR: canceling statement due to conflict with recovery
* Query fails x

* Analytics team complains x

* But: Primary stays healthy v

WITH hot_standby_feedback (ON):

Replica behavior:

* Long query running (analyzing 2 years of data)

* Replica » Primary: "Hold XID 5,234,891, don't clean yet"
 Primary: "Okay, I won't clean those rows”

* Query runs for 2 minutes successfully v

* Analytics team happy v

* But: Primary accumulates dead tuples for 2 minutes x

boringSOL

The Timeline of the bloat

Primary sees:
6:00-6:02 PM: Daily report holds XID 5,234, 891
VACUUM: "Waiting..."
User traffic: 1,000 UPDATEs/sec x 120 sec = 120,000 dead

tuples

6:02-6:07 PM: Weekly aggregation holds XID 5,235,200
VACUUM: "Still waiting..."
User traffic: 1,000 UPDATEs/sec x 300 sec

300,000 dead
tuples

6:07-6:15 PM: Monthly rollup holds XID 5,236,100

VACUUM: "STILL waiting..."

User traffic: 1,000 UPDATEs/sec x 480 sec = 480,000 dead
tuples

boringSOL

The smoking gun

SELECT client_addr,
state,
backend_xmin,
replay_lag

FROM pg_stat_replication;

client_addr | state | backend_xmin | replay_lag

10.0.1.52 | streaming | 5234891 | 00:00:00.2

boringSOL

Meanwhile on replica for analytics

SELECT pid, state,
now() - xact_start as duration,
left(query, 80) as query

FROM pg_stat_activity

WHERE backend_xmin IS NOT NULL;

duration | query

01:03:15 | SELECT date_trunc('month', created_at), count(*),
sum(revenue). ..

boringSOL

#incidents - Three things changed.
147 messages And they compounded.

[CEO has joined the channel]

"Everything was fine three weeks
ago. What changed?"

boringSOL

Number of simple things
Big Compound disaster

boringSOL

The emergency fix

1. Sacrifice the reporting on day 1 (give ETA)
2. Manually trigger VACUUM (not FULL) on the worst affected
table (can be dozens at this point)
3. Watch the progress
SELECT schemaname, relname, n_dead_tup, last_autovacuum
FROM pg_stat_user_tables

WHERE n_dead_tup > 10000
ORDER BY n_dead_tup DESC;

boringSOL

Fix the HOT updates
PostgreSQL for everything works...

But might not always be a good solution

boringSOL

Setup monitoring
Idle in Transaction

SELECT pid, usename, state,
now() - xact_start as duration,
left(query, 80) as query
FROM pg_stat_activity
WHERE state = 'idle in transaction’
AND now() - xact_start > interval '1 second'
ORDER BY duration DESC;

Dead Tuple Accumulation HOT Update Ratio SELECT
client_addr,
SELECT schemaname, relname, SELECT schemaname, relname, i
. backend_xmin,
n_dead_tup, n_live_tup, n_tup_upd, n_tup_hot_upd, L T A
round(100.0 * n_dead_tup / round(100.0 * n_tup_hot_upd / rg lav 1a - -29¢,
NULLIF(n_live_tup, 8), 1) AS NULLIF(n_tup_upd, 8), 1) AS hot_pct o P SI;t Se Lieation-
dead_pct, FROM pg_stat_user_tables P9- -rep '
last_autovacuum WHERE n_tup_upd > 1000
FROM pg_stat_user_tables ORDER BY n_tup_upd DESC;

WHERE n_dead_tup > 10000
ORDER BY n_dead_tup DESC;

boringSOL

The Compound Effect

Week 1: Transaction duration problem
Dead tuples/hour: 50,000
VACUUM capacity: 200,000/hour
Net: VACUUM keeping up v

Week 2: + HOT disabled by index
Dead tuples/hour: 250,000 (5x increase)
VACUUM capacity: 200,000/hour
Net: Slowly losing ground A

Week 3: + hot_standby_feedback blocking VACUUM
Dead tuples/hour: 250,000
VACUUM capacity: ©/hour (during analytics window)
Net: 6 hours of zero cleanup = 1.5M dead tuples
Every. Single. Day.

boringSOL

The Real Lesson We thought: "Transactions protect data“

Reality: Transactions hold snapshots that
This wasn't a PostgreSQL problem. block cleanup
This was a mental model prOblem_ We thought: "Indexes make queries faster"
Reality: Indexes disable optimizations and

multiply maintenance
We thought: "Replicas isolate workloads”

Reality: Replicas can reach back and choke
the primary

boringSOL

The (NOt SO) PostgreSQL tells you the truth.
BeaUtifUI Truth But it tells you in pieces.

Each piece is correct.

But the whole picture?

That only emerges in production.
At scale.

At any time.

When someone's pager goes off.

boringSOL

What | Want You To Remember

Not the queries. One thing:

Not the settings. Every operation in PostgreSQL
. has a cost you don't see until

Not the emergency fixes.

scale reveals It.

SELECT holds snapshots.
Transactions block cleanup.
Indexes multiply writes.
Replicas can poison primaries.

boringSOL

Now Let's Make It Actionable

pg_stat_activity > Who's holding snapshots?
pg_stat_user_tables - Where's the bloat?
pg_stat_replication > Is my replica choking my primary?
pgstattuple > Are my indexes healthy?

boringSOL

Simple Thing No
1 - Transactions
The Rules

1. Never do external I/0 inside a
transaction

2. Measure transaction duration, not
query duration

3. Set a hard limit, be relentless

-- Transaction / snapshot issues
statement_timeout
idle_in_transaction_session_timeout
lock_timeout

-- Replication
max_standby_streaming_delay
max_standby_archive_delay
hot_standby_feedback
vacuum_defer_cleanup_age

boringSOL

It's not just global settings

idle_in_transaction_session_timeout = '5s';
statement_timeout = '10s’;
lock_timeout = '3s’;

ALTER ROLE app_user SET statement_timeout = '5s';
ALTER ROLE app_user SET idle_in_transaction_session_timeout = '1s’;

ALTER ROLE migration_user SET lock_timeout = '60s’;
ALTER ROLE migration_user SET statement_timeout = '30min’;

boringSOL

Transaction for developers

Still one of tho most misunderstand concepts

Transaction = Breath hold
The database holds its breath until you commit.

Don't make it hold its breath while you call an API.

Short transaction = Happy database

boringSOL

But What About 2PC/XA?

Two-Phase Commit: The "solution"

that doubles your problems.

2PC

2X Problems

2X Latency

2X Failure modes

2X Complexity

2X The reason your DBAs/DBREs drinks

Long transaction hoping nothing
fails

2PC/XA hoping databases
coordinate

¥ Short transactions (database writes
only)

V' ldempotency keys (safe retries)
¥ Outbox pattern (reliable events)

¥ Compensation (undo what you can't
prevent)

boringSOL

IT (all) DEPENDS

boringSOL

Philosophy of boringSQL

boringSOL

